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SUZMARY

A new family of Fourier-based estimators of the parameters

of the multivariate Gaussian distribution 
is presented. The estimators

are equivalent to parametric density estimators. Three distinct

estimators arise, each of which is robust and reduces to the maximum

likelihood estimator as a special case. By varying the window width

of a parametric density estimator, a set of diagnostics which are

useful in problems of outlier detection and clustering are obtained.

An example, using a trivariate data set, is given.
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1. INTRODUCTION

In fundamental papers Rosenblatt (1956), Parzen (1962), and

Watson and Leadbetter (1963) considered the problem of estimating a

density. While the approach used by these authors is non-parametric,

we shall be concerned with density estimation in a parametric frame-

work. In this framework the form of the density is assumed to be known

apart from parameters which completely define the density. We shall

exclusively consider the problem of estimating the parameters of the A

p-variate normal density

fT I) (X

f =x) 2-D7 exp(- (x - UD(x - U)) , (1.1)

where J is the mean vector and D is the covariance or dispersion

matrix.

The characteristic function corresponding to (1.1) is given

by T T
:(u) = exp(iLTu uTDu) (1.2)

T"
where u = (uI , u2, ... u is a column vector of real numbers. If

x1' 2' 'n n is a random sample from (1.1), the sample characteris-

tic function

(u) - n- exp(iuTx.) (1.3)
j=l

is unbiased for (1.') for every fixed u . Information concerning

and D can be extracted from (u) by methods similar to those ofand-

Paulson and Nicklin (1983). In this case the estimators of and D

-S

.°. °,'4



2

would be determined from score functions for W and D developed by

differentiating

I(u) - (U) 2 exp(-m
2 u Ku)du (1.4)

with respect to ,i and D , setting K - D and then setting the re-

sulting expressions to zero. The expression (1.4) is therefore not a

bona fide objective function.

An alternate approach is to proceed as follows. Let

n( U ) Z- e x p ( i u D _ ( x . - ) ) ( 1 .5 )
J-

Whereas n (u) is a statistic, n (u) is not, but

E('+ (u)) - .'(u) - exp(- , TU) (1.6)

The parameters and D of (1.5) may be estimated by making p (u)

and P(u) match up in some sense. There are many ways in which this

may be done, but we shall present only that which has been found to be :.

most theoretically as well as computationally convenient and useful. %

Computational convenience is not a matter of small importance, it is

in fact the overriding consideration when the dimension p becomes

large; an estimator is effectively worthless if it cannot be calculated. eN

We shall ultimately 
tain three pairs )*. estimators )f

( , ~ D) , all arising from consideration of matching up n(u) with

All pairs of estimators will be useful in the identification of

potential outliers, in exploratory data analysis, and in clustering

problems. Furthermore, all estimators will be qualitatively robust in
S?
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the sense that their multidimensional influence functions will be

bounded and re-descendant; all will, reduce to familiar estimators as

a special case.
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2. DERIVATION OF THE ESTIMATORS BASED ON ' (u)

Define the function

m , D ) = f - Pu(u ) 2 T ( 2 1
~mn - exp(-rnu u)du (2.1)

The function Qn(1, D) is a bona fide objective function for and

D when 0 < '0 < . The integrand of equation (2.1) can be rewritten

in terms of the residuals in u ,

-n T- T

R(u) = exp(- (l + m2)u u) - n- exp(iu D (xj - u) - im u u) (2.2)
~~ ~j=l - .. . .. .

j-1.

as

Qm, n D , D) R(.) R (u)du = IR(u) 2 du

where R (u) denotes the complex conjugate of R(u)

Estimators which result from minimizing (2.1) are thus those

which minimize the integrated squared moduli of residuals defined by the

Fourier transforms in (2.2).

Explicit integration of (2.1) yields

.2 2 2 -1 T-Pn-m) exp-(.m2)-(v. -(.m)T(. -

1l 2 )-"_p

2 n,(m + exD-)-(P . - -

+ (m-2 + I) : P  2 3

,a..
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where

- I

Equating the partial derivatives of (2.3) with respect to 1 and D

(Dwyer, 1967) to zero gives the estimating equations for w and D as,

respectively

m + p 2D- ~ - ) T - ' =

nP(m2 + - - (x. -)exp,-(4m + 2)-(x. - D

(2.4)

and
S.

7 P[ -I m -2 (m ' ) -' -P i D -I  - Xk)(X - TD- I

j k x , k

j k1

exp{-(4 m2)
- (x. xk) D -(x

k)j - D -j -x )

',

+ (n
- ( 2 + 'P)- P-l - D-(x - (x. ) T-

2 1' D- 1(j'

expl-(4 m2 + 2)- ( -( x. -(x= 0 (2.5)

From (2.4) and (2.5) we find that the estimators for and D . Z

and D , say, satisfy the implicit equations

~ .1

. Vj l!
L v , m

and %

A B , (2.7)

S.
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where

2 - P-1 TA (m + -1) (x. - )(xj -(xJ ,.

2 -1 T-I-+ exp.-( ,m - 2)-l:. - ) D-(x. - .4: , (2.8)

and

(2n) 1 2 -,P-I 7 7 (x. - x, )( - x k T
-k(xJ -k

T I

exp,(Am) (x- x. D -X %(2.9)

and

Vijm exp{-(4 m2 + 2)- ( T D- x(- 2 (_ j- - ) (xJ - 2 O :,

The generalized distances (x. - )D I (x. - -) and

T -1(x - xk) 3-(x. - constitute an essential component of the esti-

mation process defined by (2.6)-(2.10). These distances have been used

in a variety of contexts including clustering (<nanadesikan, 1977, Ch.

4), identification of potential outliers (Barnett and Lewis, 1978, Ch.

6; Cnanadesikan and Kettenring, 1972; Rohif, 1975), and regression

diagnostics (Belsley, Kuh, and Welsch, 1980, Ch. 2). Because the diag-

nostic capability of these generalized distances is embodied in the

estimation process itself, we have in a real sense combined the processes Ie7

of estination and criticism. The word criticism is used here in the

sense of Daniel (1959), Box (1979, p. 2), and Paulson and ticklin (1?33). %

Criticism is the process of assessing the intern"i "ns :.n.": V

data and the tentative model, in this case that the x. are indepen-

dently distributed according to a p-variate Gaussian law.

% J U

S - -- -



7

^' - -

As m = 
, the estimator ni + . , the ordinary

sample mean vector. The covariance matrix D is not strictly estimable

through (2.7) when m -* since we end up with, at 'i -- ' the

identity

1x )(x.x T
n (x - ) =l 2 n(n - / L (x(x.--x k )(  -

(2.11)

which does not explicitly involve D . Either side of (2.11) may be *4

used as an estimator for D on the truth of the independent, identical, ,.

p-variate normality of the x. . The estimators pI and DI are not

m-estimators because of their explicit dependence on the pairwise -

generalized distances. The comment that either side of (2.11) may be

used to produce estimators for D leads us to presently develop two

different estimators for D .

0."

I

U,.

U,.'



8 0
or

3. SIMPLIFIED ESTIMATORS OF D

The estimator D I  is numerically difficult to extract from

(2.7), especially if p is large. Fixed point and Newton-Raphson

for producing D Ihave been developed and found to work well
J.

except for computational expense. However, the intriguing identity

(2.7) at the solution .i and 1  suggest two alternative estimators

for D . The first is based on A of (2.8). The joint estimators for

'i and D are obtained by determining the value K in
2

-T 2 -1 -
=, K(xi -)(x. D~exp'-4 +2) (.-)D(.-

(3.1)

which makes E(S2 ) = 0 Direct computation gives

K.2 = 2+ 2m2  (3.2)
1 + "'M

Thus the joint estimators for '. and D , z2 and 5 , satisfy the
4'.1*

imap liic it e 
qu a t ion s

x , ,

2 = 

I z- 

" 

.

~x 
(X. vV.,

+ 2m j -a - -.1 -(3.4)
2 -

! j -. m

w ith

" >x. - (3.5)v ,.m  
= exp 

-(- m -'- 
2, :: - .- 

x 

3 5 

:
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Another pair of estimators for p and D may be based on

B of the right hand side of equation (2.8). We require the constant

K3  in

S3 = X x (x - _ D)(x exp(-4m2 )-(x T D-l 1(x X
j3 k 3(-j - k -j k-j - .k j-k
j.k

(3.6)

which makes E(S3) = 0 . Since x - Xk j A k , is Np(0, 2D) we

find by direct computation that

K( + {(n - 1) + (1 + 1 P} (3.7)
3 -(n- 1) 2 Mm m

Thus the joint estimators for p~ and D ' and D3 'satisfy the

implicit equations

;I j~ (3.8)

L.V3jkm
j#k

(x - X X - T

D K (3.9)-. : 3 - - 3 9

33.
V g 3j km

J~k

with

v = exp-h.-)-(x - ) D- (x. - Xk)' (3.10)
3jkrn 'x - -k - -j k

Both estimators D2  and D are computationally more

attractive than D All of D. , j 1, 2, 3 are positive definite

with probability one for i > 0 whenever n > p although all may be
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algorithmically singular. The estimator D 2 is an M estimator for

D but D I and 3 are not because of their explicit dependence on

the pairwise generalized distances. All of D, j - 1, 2, 3 are

affine invariant. The forms of the equations (2.7), (3.1), and (3.6)

imply that the influence of a single observation is bounded and re-

descendent so that the estimators are qualitatively robust. The weights

v i m , V)jm , and v3j m  , 0 < m < provide useful diagnostics for

assessing the character of the data vis-a-vis the normality assumption.

These weights are also useful in identifying potential outliers or data

which require further study. Overall patterns in the final weights are

also useful in this regard. These points are illustrated in a subse-

quent example.

The asymptotic efficiency of the estimators :. and D.
-] -3

relative to the maximum likelihood estimators is an increasing function

of m and approaches i as m , . The efficiencies of _2 and D'

among the three pairs o' estimators are easiest to -btain.

th
The efficiency of the 3 component o _ , say 2,

relative to the sample mean is easily determine. an! is ziven by

2 -2) (3"..l)
eff(-. 0) 2

th"

the efficiency of the j diagonal component of D, say d' rela-

tive to the usual maximum likelihood estimator is onlv a little more

difficult to obtain and it is given by

eff(d~j =( - i (3.12)

where c - (1 + 2-

.,
4. ,=



Figure I provides some of these efficiencies as a function

of m and p . The efficiencies associated with -u (,,I~ has the

same asymptotic efficiency as 2 ) and b3 are approximately

those of 2 and D2  A small Monte Carlo study suggests that the

efficiencies related to D are slightly higher than those of D

The efficiencies of the off-diagonal element of D2 relative

to the maximum likelihood estimates of covariances are very nearly equal

to those of the diagonal elements.

The contours of all influence functions of the estimators

, j , Dj at the multivariate normal are all closed and bounded. This

closedness property implies that estimation may be combined with

clustering or may be used as a clustering algorithm or used to evaluate

the results of a clustering algorithm. The clustering capability asso-

ciated with estimation of p and D allows for an identification of

potential outliers in multivariate normal data.

I.. 4.
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SPHERICRL SCPLE EFFICIENCIES
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FIGURE lb. Efficiencies of d2. as a function of mn and p.
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4. PARAMETRIC DENSITY ESTIMATION

The estimators and D of Section 2 are equivalent to-1

those derived from the following parametric density estimation consid-

erations. The expression R(u) of (2.2) represents a difference of

characteristic functions whose inverse is

r(x) - g(x) - gn(X) (4.1)

where g(x) is the spherical normal distribution with

2 -+ m2- T
g(x) - 127(l + m2)I'-exp.- (l + m2)-x:x (4.2)

and g (x) is an estimator of g(x) with
n-..

g (x) n 2?mI exp.-.mQ ) l." (4.3)

z. ( (x - D- (x. -)) (4.4)

The matrix I is the pxp identity matrix. The expression n (x) is

unbiased for g(x) when the x. are p-variate Gaussian. By the multi-

dimensional version of Parseval's theorem

D) R(u)'2du =(2-)5
mn n - - %* ( .)*

p p p..

Accordingly, the estimators and D1 are those arrived at from

minimizing the integrated squared residual in x and may be accurately

termed parametric density estimators.

The robustness characteristics of the estimators i nd D

are easily seen from workin4 with (4.5), e.g., ifferentiation of (4.5)

We -.
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with respect to i gives

n (g(x) - gn (x))dx - 0

Rp

From this equation we readily deduce for 0 < m < that the marginal

contribution of x , say, to the estimate of ij depends on all the
-n

xj , not just xn , as well as the assumed p-variate Gaussian density,

that it is bounded, and that it is redescendent as liXni : The

function g(X) is similar to a Parzen kernel density estimator; the

form of the kernel is determined by the function exp(-m2 u Tu) of

(2.1). The advantage to the choice of the Gaussian kernel is that it

leads to convenient computational expressions. Choice of functions

ci(U)i 2other than exp(-m2 u Tu) generally leads to kernels which

do not permit closed form integration of (4.5) and thus make for in-

tractable numerics when p > 2 . Intractable numerics result from the

need to compute integrals by numerical methods.

Indeed, the potential for application of parametric density

estimation procedures is bleak if integrals of the form (2.1) or (4.5)

for a non-Gaussian p-variate density f(x) cannot be evaluated in

closed form. The reason is simple: high order numerical integration

for p large is not viable even for today's computers.

,.,.

r . a . .. . • . , o . . • . . . . . . . • • • . . • • * - - • . ' V
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5. AN EXAMPLE AND DISCUSSION

A choice of m is needed to implement the estimators of

Sections 2 and 3. We feel that exploration of the data vis-a-vis the

p-variate normal model is in many cases more useful since it leads to .4
a deeper understanding of the data generating process and the actual 8

problem at hand. Accordingly, it will often be useful to use a range

of values of m in our analyses since the responses of the parameter

estimates and final weights to changes in m generates very useful

diagnos tics.

Table 1 gives the chemical analysis of 20 geological speci-

mens in terms of percentage of iron (Fe), sodium (Na), and potassium

(K) which had been believed by geologists to be approximately homo-

geneous in character and also trivariate Gaussian. All two way scatter-

plots of this data are given in Figure 2. A few points visually "stick

out" enough to question the belief of homogeneity and simple 3-variate

Gaussianity. It is of interest, however, to determine how the three

robust estimators of covariance react to this data for various values

of m .

Table 2 presents the estimates of the variances and correla-
- 7%1

tions for m2 - 10, 5, 2 and maximum likelihood. At m - 10 , all

estimates are reasonably close to those of maximum likelihood and at

2 2 =m - 5 there are scme minor differences. However, at rn -2 we find
.%

that there are now important differences in the estimates. These dif-

ferences provide a warning that something may be awry regarding the

internal consistency of the data and the assumption of 3-variate normal-

ity. Of particular interest are the estimates of the correlation 23,
13 *

V.00, V V %,
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TABLE 1

CHEMISTRY OF GEOLOGICAL SPECIMENS

Observation
Number Fe Na K

A 2.6 1.7 3.4

B 2.1 2.1 3.4

C 1.3 2.8 1.7

D 2.2 2.1 3.0

E 1.3 2.2 3.6

F 1.6 2.2 3.7

G 3.1 2.2 2.4

H 2.8 1.7 3.8

1 4.0 1.4 3.3

J 2.6 1.9 3.2

K 1.5 2.0 4.2

L 3.9 1.6 2.5

M 3.1 1.7 3.5

3.1 1.9 3.6

0 1.7 2.1 3.6

P 1.4 2.2 4.0

Q 3.0 2.0 3.8

R 2.9 2.2 5.5

S 2.9 2.8 5.9

T 2.9 2.9 6.5

,I
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Geological Specimens
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TABLE 2

PARAMETER ESTIMATES FOR SEVERAL VALUES OF m 2

22

Estimator m Fe Na K P12 _ 13 23

D 10 0.653 0.151 1.26 -0.419 0.035 0.441

5 0.651 0.152 1.30 -0.396 0.085 0.473

2 1.19 0.166 0.633 -0.770 -0.133 -0.413 -N

D2  10 0.659 0.143 1.16 -0.438 0.058 0.438

5 0.671 0.135 1.07 -0.446 0.021 0.464

2 0.776 0.070 0.229 -0.824 -0.508 0.137

D 10 0.701 0.153 1.23 -0.439 0.059 0.436
3

5 0.722 0.144 1.14 -0.450 0.020 0.458

2 0.828 0.075 0.245 -0.828 -0.496 0.139
+.

MLE 0.646 0.149 1.23 -0.435 0.089 0.416

N.

,N

I.'

N'.
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for the four estimators. Maximum likelihood perceives a relatively I
strong positive correlation between Na and K , the estimators D1

and D3 perceives a relatively weak positive correlation between Na

and K , and the estimator Dl perceives a relatively strong negative

correlation between Na and K An examination of Figure ic Leads

one to conclude that each interpretation is permissible, depending on

which data points are considered inconsistent with the remainder of

the data and the 3-variate Gaussianity. It should be emphasized that

a purely robust procedure which focused on 95% efficiency may not

have picked up a potential problem with the data-model unit while an

exploratory (sensitivity of solutions to changes in m ) analysis did.

Of course, for this 3-dimensional situation we can easily see by

graphical methods that the data are not homogeneous and that there may

be some interesting geological structure which warrants further inves-

tigation. Since simple graphical methods may prove less effective in

higher dimensions, there is a real advantage to using these estimators

in combination with graphical methods for exploration and deeper under-

standing of data and its generation.

The final weights v.. and w ".. i.e., v eva Iuated 

at , D, , are useful in diagnostic examination of the data. :able

3 presents the final observational weights for -n' , for

2. 1, 2 and v for D All three estimation procedures
k1j 3jkm 3

call attention to observations 18, 19, and 20 as being potentially

different from the remainder in the assumption of Guassianity. Methods

2 and 3 strongly indicate thlat observation 3 is potentially different

while the estimator I weakly indicates the potential difference. We do

%.% %" % *" "- *' , ' . '- -- .- - . ?i ' " " % - " 'S-S "
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TABLE 3

FINAL OBSERVATIONAL WEIGHTS FOR m 2

2 .___ 2 .D2

Number m =2 m 2 2 =2

1 0.058 0.061 0.059

2 0.069 0.078 0.074

3 0.038 0.005 0.011

4 0.068 0.069 0.066

5 0.062 0.067 0.064

6 0.065 0.073 0.070

7 0.051 0.033 0.034

8 0.067 0.069 0.066

9 0.054 0.052 0.051

10 0.068 0.077 0.074 P

11 0.060 0.062 0.059

12 0.049 0.048 0.047%

13 N

130.067 0.073 0.070

14 0.056 0.055 0.055

15 0.067 0.075 0.072

16 0.060 0.067 0.064

17 0.042 0.036 0.038I

18 0.6x10-3 0.xO 0.007

19 O..tiO6  O.3Kl.O- 0.010

20 i.1I0 8 0.3xl1012 0.010
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not know which, if any, of the data points are really different, but

we do want to know of the potential existence of such points since

this information is useful in evaluating our models and our knowledge

of the phenomenon under examination.

i?
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